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We extended Dunham’s approach to analytic treatment of vibration-rotational spectra of diatomic molecules
and applied the method to GaH and LiH in their ground electronic statesÌ1Σ+. Published wavenumbers of
assigned transitions are reproduced with fewer parameters for potential energy than reported elsewhere. From
parameterst0

Ga,H representing nonadiabatic rotational effects, we estimate atR0 the rotationalg factor for
69Ga1H g0 ) -3.493(61) and electric dipolar momentµ0 ) 6.9(44)× 10-30 Cm for assumed polarity+GaH-.
The former conforms acceptably withg0 ) 3.4440 calculated with the second order polarization propagator
approximation.

1 Introduction

The standard procedure to reduce infrared (IR) and microwave
(MW) spectra of diatomic molecules to parameters of a
potential-energy function is based on an analytic approach
developed by Dunham1 in 1932.

To determine states of quantized energy of vibration-
rotational diatomic systems, Dunham1 solved Schro¨dinger’s
equation

including the Born-Oppenheimer (BO) internuclear potential
energy

by making use of a semiclassical (Brillouin-Kramers-Wentzel)
method to produce eigenvalues in a form

In eqs 1-3, B0 ) p2/(2mR0
2) denotes2 the equilibrium rota-

tional parameter andm the reduced mass of the system,R is
the instantaneous intermuclear separation, andR0 its value at
equilibrium, according to conventional notation;Ykl are Dun-
ham’s term coefficients1 that depend on parametersR0 andai,
whereasJ andV are rotational and vibrational quantum numbers,
respectively.

Thus, by fitting measured vibration-rotational spectra to
terms EVJ

BO one can readily, either directly or indirectly
(through intermediate quantitiesYkl), evaluate paramtersR0 and
ai that well define a potential-energy function (2) within a range
R ∈〈0, 2R0〉 of internuclear separation.3

With increased precision and resolution of spectral measure-
ments, it became clear that this approach works satisfactorily

for only poorly resolved bands. For highly resolved spectra,
particularly those obtained with Fourier transform spectrometers
and diode lasers, serious discrepancy between theory and
experiment is reported.4-11 In adapting of Dunham’s method
to contemporarily measured precise spectral data, several
improvements are proposed; they include introduction of
representation other than that in eq 2 for internuclear potential
energy,12-15 adiabatic and nonadiabatic rotational (vibrational)
corrections16-19 to BO eigenenergies eq 3, and application of
other methods20-23 to solve Schro¨dinger’s equation (1).

Ogilvie applied24 an expansion for potential energy15

and an hypervirial perturbative approach21 to solve Schro¨dinger’s
equation19

with adiabatic V′(x) and nonadiabatic rotationalR(x) and
vibrationalâ(x) corrections to BO energiesEVJ

BO.
The adiabatic term reflects the dependence of internuclear

potential energy on not only the distance between nuclei but
also their relative momenta; nonadiabatic rotational effects
reflect the fact that electrons fail to follow perfectly the nuclei
rotating about the center of molecular mass, whereas nonadia-
batic vibrational effects appear because of vibrational inertia
of electrons.

All radial functions in eq 6 were expanded into a series of
variablez that remains finite-2 e z < 2 throughout the range
of molecular existence 0e R < ∞. Hence the potential
expansion (eq 4) converges in the rangeR ∈〈R0/3, 3R0〉,
significantly extended relative to the convergence radius of
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According to Ogilvie’s notation,19,24the functions representing
adiabatic and nonadiabatic effects take the forms

Hereme, ma, andmb are masses of electron and nuclei.
The hypervirial perturbative approach provides eigenener-

gies24

in which Zkl
r,a(b) and Zkl

V,a(b) are adiabatic and rotational (vibra-
tional) nonadiabatic terms depending on radial parametersui

a,b,
ti
a,b, andsi

a,b.
The energy formula (eq 10) is implemented in a computer

program Radiatom.24 Its application in spectral analysis provided
satisfactory reproduction of observed vibration-rotational tran-
sitions of diatomic species and valuable information on their
electric and magnetic properties.25-30 The latter are represented
by the dipolar momentµ(x) and rotationalg factor gJ(x) (that
can be evaluated from Stark and Zeeman experiments, respec-
tively) simply related30 to nonadiabatic parametersti

a(b)

Here e and mp denote elementary charge and protonic mass,
respectively; electric polarity of the molecule is assumed to be
+AB-.

Another alogrithm for reduction of infrared and microwave
spectra, based on a so-called deformationally self-consistent
(DS-c) procedure31 (DS-cP), is reported; its application to highly
resolved spectra of GaH32, LiH33, and GeS34 provided satisfac-
tory reproduction of experimental data and invoked fewer fitted
parameters than in Ogilvie’s approach.26,29,30 A computing
program DS-cP employs analytic expressions for a purely
vibrational contribution to molecular eigenenergies, but the
equilibrium reference conformation in a given state is calculated
numerically using bisection31 or the Newton-Raphson algo-
rithm.36 Such an approach inherently lacks explicit analytic
expressions and requires major modification of programs used
in spectral analysis so far.

The main objective of this work is to present a further method
to investigate highly resolved spectra of diatomic molecules;
this method incorporates all advantages of the DS-c approach
but is formulated in purely analytical terms. All mathematical
formulae involved in this alogrithm are derived with a symbolic
computation (Maple) processor, following which we apply
standard software used in spectral analysis.

2 Method

A standard procedure to solve wave equation 5 consists of
expansion of the effective potential (eq 6) into a series in a
variable x and then applying a semiclassical1 or hypervirial
perturbative method21 to produce eignenvalues (eq 10). This

approach is well justified32 for purely vibrational systems
described by the BO potential (eq 2). For molecules endowed
with a potential (eq 6), vibrational displacements of nuclei take
place in a vicinity of a modified equilibrium conformationRVJ

defined according to the criterion for a minimum

An alterationR0fRVJ is a result of centrifugal deformation31,32

and nonadiabatic vibrational effects of high order (si>0
a(b)) re-

sponsible for the appearance of the termEVJ
BOâ(x) in the

effective potential energy (eq 6) and additionalV-dependence
of RVJ.

Starting from this basic idea, we express all terms in eq 5
with a modified variable dependent on (V, J)

to which, we apply a linear transformation

Accordingly, we obtain a wave equation

in which

is an effective rotational parameter, whereas

is an effective potential.
Expanding eq 18 into a Taylor series of variableη

we arrive at Schro¨dinger’s equation

and a quantum mechanical force (in Heisenberg’s representation)

in which Ĥ is a hamiltonian operator appearing in eq 21.
A state of dynamic equilibrium between deforming and

restoring potential forces is achieved when

We consequently exclude a linear termb1
VJη from eqs 19 and
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21, arriving at an effective Schro¨dinger equation

in which

Equation 24 is amenable to direct solution in a semiclassical1

or hypervirial perturbative21 scheme; either produces eigenvalues
in a form

in which

andYk0 are Dunham’s vibrational coefficientsYk0, in analytic
expressions,1 into which we substitute{R0, as}f{RVJ, as

VJ}.
Expansion of potential energy (eq 18) in the effective variable

η affects its convergence in comparison with (eq 18) expanded
in the variablex. The latter procedure is applied so far as a
point of departure for the semiclassical1 and hypervirial per-
turbative determination21 of eigenenergies (eqs 3 and 10). One
can readily verify thatη has a convergence radiusR ) 2RVJ,
increasing withJ because of centrifugal deformation. Formula-
tion of molecular dynamics in terms of a dynamic reference
conformationRVJ instead of a staticR0 one hence implies that
η ) (R - RVJ)/RVJ describes purely vibrational displacements
of nuclei aboutRVJ, in contradistinction tox ) (R - R0)/R0

describing vibrational deformational displacements of nuclei in
a vicinity of R0. In the latter case, the turning points for
vibrational motion might escape from a domain of convergence
(R g 2R0) producing a divergent series and poor reproduction
of the measured transitions.

3 Calculation of RWJ

Eigenvalues (eq 26) contain unknown parametersxVJ defined
according to condition (eq 13) for equilibrium. In previous
work,31-36 we calculated the rootsxVJ of equation 13 numeri-
cally, with a bisection31 or Newton-Raphson algorithm,36

allowing us to fit spectral data in an iterative DS-c scheme.
Here, we derivexVJ analytically using Maple according to a

procedure described below. In the first step one differentiates
an effective potential (eq 6)

Then eq 28 is expanded into a Taylor series in a variablex

in which

This series is reverted to obtain

Putting f ) 0 (equilibrium condition equivalent toF̂ ) 0) one
generates an analytic expression forxVJ

In calculations, we used a numerical formula forxVJ, given as
output from Maple in optimized Fortran code.

Having calculatedxVJ, one readily evaluates the dynamic
reference conformation

whereas on substituting eq 32 into eq 26, the latter becomes a
purely analytic formula describing energy states of a diatomic
system.

4 Evaluation of function â(x)

Attempts to evaluate from spectra parameterssi>0
a(b), to repre-

sent nonadiabatic vibrational effects beyond zero order, were
successful for only GaH30 and LiH.25,30 In the latter case all
parametersti

Li,H, to represent nonadiabatic rotational effects,
were constrained during the fit to values consistent with the
rotationalg factor and dipole moment of LiH (both from the
quantum mechanical calculations25,30 via eqs 11 and 12. As
parameterssi

a(b) appear in eq 6 in the presence ofEVJ
BO, the latter

contributes to eigenenergies (eqs 10 and 26).
In the standard approach,24 EVJ

BO is applied as the analytic
formula (eq 3), consequently eq 10 takes an exact analytic form
depending on parameters of the effective potential (eq 6). An
alternative practical form of eq 6 reads

whereas a replacement

transforming eq 34 into eq 6 is an arbitrary approximation.16

To avoid it, we propose an approach in whichEVJ circulate
during fitting of the spectral data, in numerical form.

For initial values ofEVJ ) 0 (put automatically into eq 34),
parameters for potential energy are fitted to experimental data
using eigenenergies (eq 26) and a weighted nonlinear least-
square routine with weights taken as inverse squares of
uncertainties of experimental data. Because the termEVJâ(x)
has a multiplicative form, it makes no contribution to energies
(eq 26) calculated in the first step of the fitting procedure.

Evaluated parameters allow us to calculate numerical values
of eigenenergiesEVJ from eq 26, which in the next step are
reintroduced into eq 34. This iterative procedure is continued
to obtain the best fit according to the following criteria: the
minimum number of fitted parametersN consistent with the
minimum value of normalized standard deviationσ̂ ≈ 1, the
maximum value of F-statistic, and the optimal values of
estimated standard errorσi of each fitted parameteri and of
correlation coefficientscc(i,j) between parametersi and j.

Although EVJ are given in numerical form, they are more
accurate than the BO energies employed in an approach with
approximation (eq 35).
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This procedure is proposed to be suitable for evaluation of
nonadiabatic vibrational functionâ(x) including parameters
si

a(b). If the latter reduce to leading parametess0
a(b), they are

derivable directly from eq 26 given in a simplified form

in which

and

5 Application

To demonstrate advantages of this extended approach, we
apply eigenvalues (eq 36) in a test analysis of spectral data of
GaH, already intensively studied;5,9,26,32,37its highly resolved
spectra provide an excellent means to test the BO approximation
and to assess the extent of its deficiency for gallium and hydride
(deuteride) centers.5 Moreover, comparing the results obtained
by particular authors, we can examine the status of existing
theoretical models applied in contemporary spectral analyses.

As input data, we used 1094 transitions of69Ga1H, 71Ga1H,
69Ga2H, and71Ga2H, including 1045 lines from ref 37 and 49
unduplicated lines from ref 5 with∆V ) 1 up toV ) 7 andJ
) 48.

To ensure maximal significance of all fitted parameters of
GaH, we constrained one potential-energy parameterc8 in eq 4
to conform to the relation38

and the known39 thermochemical dissociation energyDe )
22906 cm-1 (2.84 eV) of69Ga1H.

From nonadiabatic rotational parameterst0
Ga and t0

H, we
estimate the permanent rotationalg factor g0 at R0 and the
electric dipolar momentµ0 for 69Ga1H, using the leading
parameters in eqs 11 and 12

We compare the results with those produced with Radiatom
and with Ds-cP and electronic calculations40-43 in Table 2.

The proposed iterative procedure to evaluate nonadiabatic
vibrational parameterssi>0

a(b) is applied to LiH. As input data, we
used 543 pure rotational and vibration-rotational transitions
of 7Li 1H, 6Li 1H, 7Li 2H, and 6Li2H, including ten rotational
lines,44 151 rotational and 377 vibration-rotational lines,11 and
5 unduplicated vibration-rotational lines45 with ∆V ) 0, 1 up
to V ) 4 andJ ) 30.

During the fit 14 parametersti)0-6
Li,H were constrained to

values specified in the work;30 all other parameters were
constrained to zero. The parametersti)0-6

Li,H are derivable from
the rotationalg factor and dipolar moment of LiH, both from
quantum mechanical computations,25,30 and with the relation-
ships reciprocal to eqs 11 and 12.

To compare potential-energy parameters of GaH and LiH
generated with the Radiatom and with the present approach
(EDA signifying an extended Dunham’s approach), we expand
all radial functions (eqs 4, 7-9 in variablez. The results of
calculations are reported in Tables 1 and 3; they contain also
parameters produced with the Radiatom with eigenenergies (eq
10) and DS-cP withRVJ computed numerically. The uncertainty
in parentheses is one estimated standard deviation in units of
the last quoted digit of values of fitted parameters.

In the calculations, we used the vibrational term coefficients1

up to tenth order for GaH and sixth order for LiH. Consequently,
expansion coefficientsbn

VJ of the effective potential energy (eq
6) contain derivatives up to twelfth order (GaH) and eighth order
(LiH), respectively. BothYk0 and bn

VJ were calculated with
symbolic processor Maple.

6 Discussion

The application of the extended approach enables reduction
of wavenumbers of 1094 vibration-rotational transitions of GaH

TABLE 1: Radial Parameters of GaH Ì1Σ+

radiatoma DS-cPb EDAc

c0/cm-1 104630.43(22) 104630.59(25) 104631.26(28)
c1 -1.347508(13) -1.3474973(46) -1.3474712(43)
c2 1.038587(55) 1.038693(28) 1.038594(15)
c3 -0.52229(17) -0.52330(13) -0.525419(69)
c4 0.04522(59) 0.04441(31) 0.05397(36)
c5 -0.1181(26) -0.0919(18) -0.615(11)
c6 0.2556(72) 0.1834(46) -0.0413(46)
c7 -0.045(32) -0.1811(34) 0.1596(91)
c8 -1.63(11)
t0
Ga -3.74(34) -3.70(29) -2.93(33)
t1
Ga 4.57(70)
t0
H -3.17043(62) -4.20266(41) -3.452(61)
t1
H 7.366(19) 8.3165(51) 6.376(54)
t2
H -15.07(26) -10.812(35) -12.368(69)
t3
H 16.22(42) 9.65(14) 12.86(13)
t4
H -11.93(46)
s0

Ga 0.539(81)
s1

Ga 14.2(38)
s0

H -1.31(12)
u1

H/104 cm-1 -10.8091(10) -7.96(64)
u2

H/104 cm-1 -32.5900(35) 5.02(69)
u3

H/104 cm-1 30.59(90) 59.741(83)
u4

H/104 cm-1 -70.3(39) -37.23(20)
u5

H/104 cm-1 139(11)
u6

H/104 cm-1 -250(28)
R0/1010 m 1.6601502(27) 1.6601491(20) 1.6601535(22)
σ̂ 0.920 1.087 0.957
F/1015 3.30 10.17 11.78
N 23 18 18

a Data.30 b Data.32 c Parameterc8 is constrained during the fit,
according to eq 43.

EVJ ) (c0
VJ + ∑

k)0

Yk0(V + 1/2)k)/[1 - â(η ) 0)] (36)

c0
VJ ) [BVJJ(J + 1)[1 + R(η) - â(η)] + V(η)[1 - â(η)] +

V′(η)]η)0 (37)

â(η ) 0) ) me (s0
a/ma + s0

b/mb) (38)

TABLE 2: Electric and Magnetic Properties of 69Ga1H
Ì1Σ+ at Assumed Polarity +GaH-

t0
Ga t0

H g0 µ0/10-30 Cm

radiatoma -3.74(34) -3.17043(62) -3.223(11) -7.3(47)
DS-cPb -3.70(29) -4.20266(41) -4.2535(46) 6.6(38)
EDA -2.93(33) -3.452(61) -3.493(61) 6.9(44)
ECc 〈-2.9418,

-3.4440〉
〈-0.2374,

1.5334〉
a Data.30 b Data.32 c Data from electronic calculations.40,41

De ) lim V(R)Rf∞ ) 4c0(1 + ∑
i)1

2ici) (39)

µ0 ) (eR0/2)(t0
Ga - t0

H) (40)

g0 ) mp(t0
Ga/mGa + t0

H/mH) (41)

Yk0 ) ∑
h)0

Yk0
2h (42)
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to N ) 18 radial parameters rather thanN ) 23 in preceding
work.26,30Despite the absence of these five superfluous param-
eters, the remaining ones satisfactorily reproduce data of GaH
within uncertainties of spectral measurements.

From nonadiabatic rotational parameterst0
Ga and t0

H, we
estimated the permanent rotationalg factorg0 ) -3.493(61) at
R0 and electric dipolar momentµ0 ) 6.9(44)× 10-30 Cm for
69Ga1H. The first value conforms acceptably withg0 ) -3.4440
calculated with a second order polarization propagator ap-
proximation.41 In contrast, the estimated magnitude of electric
dipolar moment much exceeds results of several calculations:
41-43 〈-0.2374, 1.3489〉 × 10-30 Cm, 1.5334× 10-30 Cm, and
1.20 × 10-30 Cm, all at assumed polarity+GaH-. For
comparison, values from Radiatom areµ0 ) -7.3(47)× 10-30

Cm andg0 ) -3.223(11); the latter is near the valueg0 )
-3.2452 calculated with a coupled perturbed Hartree-Fock
method.41 Ds-cP yielded an identical (within stated errors) value
of µ0 like the present approach but a divergent valueg0 )
-4.2535(46). The latter result is a consequence of excluding
u1

H from fitted parameters; its presence precluded convergence
of DS-cP becauseu1

H strongly correlates32 with t0
H. In contrast,

the present approach is insensitive to this effect and enables to
evaluate bothu1

H andt0
H, resulting in a reasonable estimation of

g0.
Applying the dissociation formula (eq 39) and values of GaH

parametersci generated with Radiatom, we calculatedDe )
-1.72× 108 cm-1 which differs significantly with experimental
valueDe ) 22906 cm-1. In order to avoid such inconsistency
in the present work, we constrained

to ensure physical significance of all potential parameters. The
calculated value ofc8 ) -0.0581(47) is about 1/28 times the
valuec8 ) -1.632(107) produced with Radiatom.30

In an analysis of the same GaH data Ogilvie and Liao26 poorly
determined adiabatic parametersu2

Ga ) 5.515(830)× 104 cm-1

andu3
Ga ) 38.9(13.8)× 104 cm-1. In a subsequent analysis30

these parameters were replaced with nonadiabatic vibrational
oness0

Ga ) 0.539(81) ands1
Ga ) 14.2(3.8), providing the same

statistical characteristic of the fit as obtained previously.
According to our results the presence in the fit of eitherui

Ga or
si

Ga is questionable; for such a massive nuclide as gallium
adiabatic and vibrational nonadiabatic effects are undetectable,
possibly due in the latter case to a vibrationalimmobilityof the
heavy Ga center for which the BO approximation becomes
satisfactory.

Our present approach appears to lack these disadvantages and
produces radial parameters that form the most compact and
physically meaningful representation of GaH data so far
obtained.

We encountered similar circumstances for LiH data in the
present work with circulating values ofEVJ. Table 2 reveals that
this approach allows us to evaluate the nonadiabatic vibrational
parameters1

H ) -2.00(16) indeterminate with both Radiatom
and DS-cP; in the latter case its presence in the fit led to a
divergent DS-c process, unlike in the present work in which
reduction of 543 spectral data of LiH toN ) 13 radial
parameters is more efficient than that obtained with Radiatom
(N ) 15) and DS-cP (N ) 14).

The proposed fitting procedure with circulatingEVJ is rapidly
convergent and in the case of LiH requires three iterations (in
comparison with 15 in DS-cP) to obtain parameters in a final
set such that values alter less than their standard errors and affect
insignificantly the precision of calculations. Initial values of
fitted parameters were taken from Ogilvie’s calculations.30

As in the present algorithm all mathematical formulae are
derived in analytic form, one can apply this approach to
quantitative analysis of spectral data using standard software
for weighted nonlinear regression. To this goal vibrational term
coefficientsYk0 can also be generated with Maple.46,47With such
programs one can readily fit measured frequencies of numerous
wavenumbers of transitions of multiple isotopic variants of a
diatomic molecule to evaluate parameters of pertinent radial
functions. The latter are an important source of information
about the internal structure and physical properties including
mechanical, extramechanical, and electromagnetic molecular
properties.30

The results obtained in this work indicate that our extension
of Dunham’s approach can be expected to enable a contempo-
rary spectroscopist to extend the range and depth of analysis of
spectra measured at the present state of the art.
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Appendix

To simplify calculations of thenth derivative bn
VJ of the

effective potentialUVJ(η) with Maple, we rewrite eq 34 in the
form

TABLE 3: Radial Parametersa of LiH Ì1Σ+

radiatomb DS-cPc EDA

c1 cm-1 65724.857(72) 65723.17(10) 65723.487(93)
c1 -0.897208(12) -0.897091(15) -0.897117(10)
c2 0.347847(76) 0.348249(30) 0.348153(21)
c3 -0.086373(42) -0.08863(38) -0.08796(17)
c4 -0.04529(18) -0.04611(72) -0.04653(37)
c5 -0.0307(52)
c6 0.0921(96)
u1

Li/104 cm-1 -5.740(44) -5.704(45) -5.671(43)
u1

H/104 cm-1 -5.2787(31) -5.2706(44) -5.2765(39)
u2

H/104 cm-1 7.245(70) 6.452(55) 5.989(70)
u3

H/104 cm-1 -7.53(14) -7.02(19) -1.53(26)
u4

H/104 cm-1 9.55(58)
s0

Li/104 cm-1 -0.194(11) 2.064(14) 2.049(21)
s0

H -0.567(10) -0.4359(86) -0.374(10)
s1

H -2.00(16)
s2

H -0.591(112) -2.99(17)
R0/1010 m 1.594912(14) 1.59491217(51) 1.59491228(48)
σ̂ 1.095 1.090 1.077
F/1015 5.0 5.98 6.56
N 15 14 13

a All parametersti)0-6
Li andti)0-6

H are constrained to values specified
in the work.30 b Data.30 c Data.36

c8 )
De

210c0

- (2-8 + ∑
i)1

7

2-8+ici) De ) 22906 cm-1

(43)

UVJ(η) )

BVJJ(J + 1)[1 + ∑
i)0

c(i)zi]

(1 + η)2
+ ∑

i)0

d(i)zi (44)
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in which

Equation 44 ensures that the Maple output is in its most compact
form, so that for example coefficientb12

VJ (derivative of four-
teenth order) written in Fortran optimized form, takes only 391
lines for c(i) i ) 0...6 andd(i) i ) 0...15.

The starting point to calculatexVJ is the first derivative of
the effective potential energy (eq 34)

in which

To calculatef, we rewrite eq 44 in the form

in which

Proceeding through eqs 28-32, one obtainsxVJ in an analytic
form applied in calculations as a Maple output in optimized
Fortran code. The Maple output is available from the author
upon request.
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z )
xVJ + η(1 + xVJ)

1 + [xVJ + η(1 + xVJ)]/2
(45)

c(i) ) me ∑
µ)a,b

(ti
µ - si

µ)mµ
-1 (46)

d(0) ) EVJme ∑
µ)a,b

s0
µ mµ

-1 (47)

d(1) ) me ∑
µ)a,b

(EVJs1
µ + u1

µ)mµ
-1 (48)

d(2) ) me ∑
µ)a,b

(EVJs2
µ + u2

µ - c0s0
µ)mµ

-1 + c0 (49)

d(i > 2) ) me ∑
µ)a,b

[EVJsi
µ + ui

µ - c0(si-2
µ -

∑
j)0

i-3

ci-2-jsj
µ)]mµ

-1 + c0ci-2 (50)

f )
dUVJ(η)

dη
)

dUVJ(x)

d(x)
(1 + xVJ) (51)

1 + xVJ ) dx
dη

x ) xVJ + η(1 + xVJ) (52)

UVJ(x) )

B0J(J + 1)[1 + ∑
i)0

c(i)zi]

(1 + x)2
+ ∑

i)0

d(i)zi (53)

z ) x
1 + x/2

(54)
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