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Extension of Dunham’s Analytic Treatment of Highly Resolved Infrared and Microwave
Spectra of Diatomic Molecules
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We extended Dunham'’s approach to analytic treatment of vibratiotational spectra of diatomic molecules

and applied the method to GaH and LiH in their ground electronic sk&t&s. Published wavenumbers of
assigned transitions are reproduced with fewer parameters for potential energy than reported elsewhere. From
parametersge"H representing nonadiabatic rotational effects, we estimat®, élhie rotationalg factor for

69GaH gy = —3.493(61) and electric dipolar moment= 6.9(44)x 10-3° Cm for assumed polarityGaH".

The former conforms acceptably with = 3.4440 calculated with the second order polarization propagator

approximation.

1 Introduction for only poorly resolved bands. For highly resolved spectra,
particularly those obtained with Fourier transform spectrometers
and diode lasers, serious discrepancy between theory and
experiment is reporteti!! In adapting of Dunham’s method

to contemporarily measured precise spectral data, several
improvements are proposed; they include introduction of
representation other than that in eq 2 for internuclear potential
energy}?-15 adiabatic and nonadiabatic rotational (vibrational)

The standard procedure to reduce infrared (IR) and microwave
(MW) spectra of diatomic molecules to parameters of a
potential-energy function is based on an analytic approach
developed by Dunhahin 1932.

To determine states of quantized energy of vibration
rotational diatomic systems, Dunharsolved Schidinger's

equation correction$®1° to BO eigenenergies eq 3, and application of
¢ BJI+1) other method®-22 to solve Schidinger’s equation (1).
[—Bod—x2 + ﬁ + V(X) — EEJO Y,,00=0 (1) Ogilvie applied* an expansion for potential enefgdy

V(X) = c,Z(1+ Z c?) z=2R-R)/(R+R) (4

including the Bora-Oppenheimer (BO) internuclear potential
energy
and an hypervirial perturbative appro&tto solve Schidinger's

VW =axX(1+y aX) x=R-R)R, (2)  equatiod’

2
by making use of a semiclassical (BrillowiKramers-Wentzel) (_BO& T UL = EUJ) Vyx) =0 ®)

method to produce eigenvalues in a form
B+ D1+ alx) - B

EP= 3 WRaw ot @ U @+ I
=0 + V() + Ey B (6)

In eqs £3, By = h?/(2mR) denotes the equilibrium rota-

tional parameter anch the reduced mass of the systeRijs with adiabatic V'(X) and nonadiabatic rotationak(x) and

the instantaneous intermuclear separation, Rnds value at vibrational 5(x) corrections to BO energieEfJO.

equilibrium, according to conventional notatiovi; are Dun- The adiabatic term reflects the dependence of internuclear
ham’s term coefficientsthat depend on paramete®s and a;, potential energy on not only the distance between nuclei but
whereas] andv are rotational and vibrational quantum numbers, also their relative momenta; nonadiabatic rotational effects
respectively. reflect the fact that electrons fail to follow perfectly the nuclei

Thus, by fitting measured vibratiemrotational spectra to  rotating about the center of molecular mass, whereas nonadia-
terms EX° one can readily, either directly or indirectly batic vibrational effects appear because of vibrational inertia

(through intermediate quantiti&g)), evaluate paramteiR, and of electrqns. . . . _
a that well define a potential-energy function (2) within arange  All radial functions in eq 6 were expanded into a series of
R €0, 2Ry[of internuclear separatich. variablez that remains finite-2 < z < 2 throughout the range

With increased precision and resolution of spectral measure-0f molecular existence &= R < «. Hence the potential

ments, it became clear that this approach works satisfactorily €xpansion (eq 4) converges in the ranBee[Ry/3, 3Rl
significantly extended relative to the convergence radius of
* Fax: +48-61-8658-008; E-mail: marcin@rovib.amu.edu.pl. coordinatex.
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According to Ogilvie’s notatioA?24the functions representing
adiabatic and nonadiabatic effects take the forms

Ve =m3 3 umZ ©

1=1 u=ab

aX) =m, t'm, 'z (8)
1=0 u=ab

po=m3 3 o m, 'z )
1=0 u=ab

Hereme, my, andm, are masses of electron and nuclei.
The hypervirial perturbative approach provides eigenener-
gieg*

E,= k,Zo Zb (Yu+Zd' + 2 (0 + 12)3Q0+ 1] (20)

in which Z;#® and z/*® are adiabatic and rotational (vibra-
tional) nonadiabatic terms depending on radial parame!fé‘rs
22 ands™®.

The energy formula (eq 10) is implemented in a computer
program Radiator’ Its application in spectral analysis provided
satisfactory reproduction of observed vibratiaotational tran-
sitions of diatomic species and valuable information on their
electric and magnetic propertiés=3° The latter are represented
by the dipolar momengk(x) and rotational factor g;(x) (that

Molski

approach is well justifie# for purely vibrational systems
described by the BO potential (eq 2). For molecules endowed
with a potential (eq 6), vibrational displacements of nuclei take
place in a vicinity of a modified equilibrium conformatid®,;
defined according to the criterion for a minimum

dUUJ(X)
dx

X3= Ry~ RJR, (13)

X=X
An alterationRy—R,; is a result of centrifugal deformatiéhs2
and nonadiabatic vibrational effects of high ordgky) re-
sponsible for the appearance of the tefi°3(x) in the
effective potential energy (eq 6) and additiomadlependence
of Rya.

Starting from this basic idea, we express all terms in eq 5
with a modified variable dependent on, Q)

can be evaluated from Stark and Zeeman experiments, respec-

tively) simply relate to nonadiabatic parametets”

u®) =(ER2)y ¢ —1)7

(11)

o1
t'm, 2
1=0 u=a,b

9, =m, (12)

Here e and m, denote elementary charge and protonic mass,
respectively; electric polarity of the molecule is assumed to be
*AB™.

Another alogrithm for reduction of infrared and microwave

n=R-RYR, (14)
to which, we apply a linear transformation
X= Xz/J + 77(1 + XUJ) (15)
Accordingly, we obtain a wave equation
d2
_BUJ_2 + UUJ(n) B EI}J 1/)1/3(7/) =0 (16)
dn
in which
B,y =H/[2m(R )’ (17)

is an effective rotational parameter, whereas

UL () = B3 + 1)1+ a(n) — ()]
W\ (1 + 17)2

+ V()L — f(y)]
+ V() + E5Y B(n) (18)

is an effective potential.

spectra, based on a so-called deformationally self-consistent Expanding eq 18 into a Taylor series of variajle

(DS-c) procedur (DS-cP), is reported,; its application to highly
resolved spectra of G&H LiH33, and Ge$' provided satisfac-
tory reproduction of experimental data and invoked fewer fitted
parameters than in Ogilvie’s approa®¥#23° A computing
program DS-cP employs analytic expressions for a purely
vibrational contribution to molecular eigenenergies, but the
equilibrium reference conformation in a given state is calculated
numerically using bisectidh or the Newtor-Raphson algo-
rithm .36 Such an approach inherently lacks explicit analytic

expressions and requires major modification of programs used

in spectral analysis so far.
The main objective of this work is to present a further method
to investigate highly resolved spectra of diatomic molecules;

this method incorporates all advantages of the DS-c approach

but is formulated in purely analytical terms. All mathematical
formulae involved in this alogrithm are derived with a symbolic
computation (Maple) processor, following which we apply
standard software used in spectral analysis.

2 Method

A standard procedure to solve wave equation 5 consists of
expansion of the effective potential (eq 6) into a series in a
variable x and then applying a semiclassitalr hypervirial
perturbative methdd to produce eignenvalues (eq 10). This

Ualn) =3 bn" (19)
&
by’ = (n) U, ()l =g (20)
we arrive at Schidinger’s equation
d2
_BZ)J_ + brl;Jnn - EZ/J qu(W) = O (21)
dy =

and a quantum mechanical force (in Heisenberg’s representation)

deJ(n)
dn

F= () (p, H] = - (22)

in which H is a hamiltonian operator appearing in eq 21.
A state of dynamic equilibrium between deforming and
restoring potential forces is achieved when

N du
F — 0 N ’ UJ(W)]
dy Jy=0

We consequently exclude a linear teb‘lﬁn from egs 19 and

=b’=0 (23)
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21, arriving at an effective Schadinger equation
dZ
—By—+ 38J772(1 + Z alsuﬂs —(Esy— b(LJd) Y,om) =0
dn? &
(24)
in which

12

' =by A= bl (25)

Equation 24 is amenable to direct solution in a semiclassical
or hypervirial perturbativ@ scheme; either produces eigenvalues

in a form
E,=hby+ 20 Yol + 1/2) (26)
k=
in which
by’ = U,4(n = 0) (27)

and Yy are Dunham’s vibrational coefficiendg, in analytic
expressions,into which we substituté Ry, agt—{R.J, agj}.
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Puttingf = 0 (equilibrium condition equivalent t6 = 0) one
generates an analytic expression %o

xf=0)=h"=x, (32)

In calculations, we used a numerical formula foy, given as
output from Maple in optimized Fortran code.

Having calculatedx,;, one readily evaluates the dynamic
reference conformation

Ry =Ry(1+x,) (33)

whereas on substituting eq 32 into eq 26, the latter becomes a
purely analytic formula describing energy states of a diatomic
system.

4 Evaluation of function f(x)

Attempts to evaluate from spectra parameéﬁ% to repre-
sent nonadiabatic vibrational effects beyond zero order, were
successful for only Ga# and LiH253C In the latter case all

Expansion of potential energy (eq 18) in the effective variable parametersi™”, to represent nonadiabatic rotational effects,
U affects its convergence in comparison with (gq 18) expanded were constrained during the fit to values consistent with the
in the variablex. The latter procedure is applied so far as a rotationalg factor and dipole moment of LiH (both from the

point of departure for the semiclassitaind hypervirial per-

quantum mechanical calculatichg® via eqs 11 and 12. As

can readily verify that; has a convergence radié® = 2R,;,

increasing with] because of centrifugal deformation. Formula-

contributes to eigenenergies (egs 10 and 26).
In the standard approaéh E® is applied as the analytic

tion of molecular dynamics in terms of a dynamic reference t5rmula (eq 3), consequently eq 10 takes an exact analytic form

conformationR,; instead of a stati&, one hence implies that

depending on parameters of the effective potential (eq 6). An

n = (R — Ry)/R,y describes purely vibrational displacements  gjiernative practical form of eq 6 reads

of nuclei aboutR,;, in contradistinction tax = (R — Ry)/Ro

describing vibrational deformational displacements of nuclei in
a vicinity of Ry. In the latter case, the turning points for

vibrational motion might escape from a domain of convergence
(R = 2Ry) producing a divergent series and poor reproduction

of the measured transitions.

3 Calculation of R,3

Eigenvalues (eq 26) contain unknown parametgrdefined

according to condition (eq 13) for equilibrium. In previous
work,31736 we calculated the roots,; of equation 13 numeri-

cally, with a bisectiof' or Newton-Raphson algorithri®

allowing us to fit spectral data in an iterative DS-c scheme.
Here, we derivex,; analytically using Maple according to a

Byd(J + 1)[1 + a(x) — f(X)]

1+ x)?
+V[1 = ] + V'(X) + E 5603 (34)

UUJ(X) =

whereas a replacement
BO
E,—E, (35)

transforming eq 34 into eq 6 is an arbitrary approximatfon.
To avoid it, we propose an approach in whiEly circulate
during fitting of the spectral data, in numerical form.

For initial values ofg,; = 0 (put automatically into eq 34),

procedure described below. In the first step one differentiates parameters for potential energy are fitted to experimental data

an effective potential (eq 6)
f(x) = dU ,(x)/dx = —F (28)

Then eq 28 is expanded into a Taylor series in a variable

fx) =Y hx (29)
in which
[ df(x
h = (@it |—>
= (i) ’ o ]x=0 (30)

This series is reverted to obtain

xH=Y h'f (31)

using eigenenergies (eq 26) and a weighted nonlinear least-
square routine with weights taken as inverse squares of
uncertainties of experimental data. Because the teffi(x)
has a multiplicative form, it makes no contribution to energies
(eq 26) calculated in the first step of the fitting procedure.
Evaluated parameters allow us to calculate numerical values
of eigenenergieg,; from eq 26, which in the next step are
reintroduced into eq 34. This iterative procedure is continued
to obtain the best fit according to the following criteria: the
minimum number of fitted parametef$ consistent with the
minimum value of normalized standard deviatiore 1, the
maximum value of F-statistic, and the optimal values of
estimated standard errot of each fitted parametarand of
correlation coefficientec(i,j) between parametersandj.
Although E,; are given in numerical form, they are more
accurate than the BO energies employed in an approach with
approximation (eq 35).
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TABLE 1: Radial Parameters of GaH XX+

radiaton? DS-cP EDAc
coemt 104630.43(22) 104630.59(25)  104631.26(28)
o —1.347508(13) —1.3474973(46) —1.3474712(43)
¢ 1.038587(55)  1.038693(28)  1.038594(15)
c —0.52229(17) —0.52330(13) —0.525419(69)
C 0.04522(59)  0.04441(31) 0.05397(36)
o —0.1181(26)  —0.0919(18)  —0.615(11)
c 0.2556(72) 0.1834(46)  —0.0413(46)
P —0.045(32)  —0.1811(34)  0.1596(91)
Co —1.63(11)
{Ga —3.74(34) ~3.70(29) —2.93(33)
e 4.57(70)
& —3.17043(62) —4.20266(41) —3.452(61)
n 7.366(19) 8.3165(51) 6.376(54)
& ~15.07(26)  —10.812(35)  —12.368(69)
& 16.22(42) 9.65(14) 12.86(13)
i —11.93(46)
% 0.539(81)
R 14.2(38)
& ~1.31(12)
UY10 et —10.8091(10) —7.96(64)
W710* cmrt —32.5900(35)  5.02(69)
W10t emt 30.59(90) 59.741(83)
W10t et —70.3(39) —37.23(20)
ut/10fcmrt 139(11)
Ul/10tcmt —250(28)
R/10°m  1.6601502(27) 1.6601491(20)  1.6601535(22)
o 0.920 1.087 0.957
F/10* 3.30 10.17 11.78
N 23 18 18

apata®® bData%? ©Parametercg is constrained during the fit,
according to eq 43.

This procedure is proposed to be suitable for evaluation of
nonadiabatic vibrational functioff(x) including parameters
s,a(b). If the latter reduce to leading parame@g’), they are
derivable directly from eq 26 given in a simplified form

0= (co’+ Z Yiolv + 1/2)9/[1 — B(n =0)] (36)
k=
in which

co’ = [B,,J(3+ L+ a(n) — BOn] + VODIL — pn)] +
V'(ﬂ)] n=0 (37)

and

By = 0) = m, (s§/m, + sym,) (38)

5 Application

To demonstrate advantages of this extended approach, we
apply eigenvalues (eq 36) in a test analysis of spectral data of

GaH, already intensively studiéd;?6-32%7its highly resolved

spectra provide an excellent means to test the BO approximation
and to assess the extent of its deficiency for gallium and hydride

(deuteride) centelsMoreover, comparing the results obtained

by particular authors, we can examine the status of existing (LiH). respectively. BothYo and
theoretical models applied in contemporary spectral analyses.

As input data, we used 1094 transitions®¥GatH, "1GalH,
69G&H, and"'G&H, including 1045 lines from ref 37 and 49
unduplicated lines from ref 5 withv = 1 up toy = 7 andJ
= 48.

Molski

TABLE 2: Electric and Magnetic Properties of GalH
XX+ at Assumed Polarity "fGaH~

tS2 tf % 1o/107°Cm
radiatomt —3.74(34) —3.17043(62) —3.223(11) —7.3(47)
DS-cP  —3.70(29) —4.20266(41) —4.2535(46) 6.6(38)
EDA —2.93(33) —3.452(61) —3.493(61) 6.9(44)
EC [+2.9418,  [3-0.2374,
—3.44401  1.5334]

apata3® P Data3? °Data from electronic calculatiorf&4!

To ensure maximal significance of all fitted parameters of
GaH, we constrained one potential-energy paranugtiereq 4
to conform to the relatiof¥

D, =lim V(R)r_., = 4c,(1+ Y 2c)

(39)

and the know?? thermochemical dissociation enerdy.
22906 cmi! (2.84 eV) of%°GatH.

From nonadiabatic rotational parametaf8 and t], we
estimate the permanent rotatiomglfactor g at Ry and the
electric dipolar moment for ®°GaH, using the leading
parameters in eqs 11 and 12

o= (eRY2)(t5* — t§)
Go = My(tg Mg, + t§/my)

We compare the results with those produced with Radiatom
and with Ds-cP and electronic calculatiétg? in Table 2.

The proposed iterative procedure to evaluate nonadiabatic
vibrational parameterﬂ% is applied to LiH. As input data, we
used 543 pure rotational and vibratierotational transitions
of 7LiH, BLiH, "Li%H, and 5Li%H, including ten rotational
lines#4 151 rotational and 377 vibratietrotational linest! and
5 unduplicated vibrationrotational line4> with Av = 0, 1 up
to v = 4 andJ = 30. _

During the fit 14 parameters’l ; were constrained to
values specified in the wor¥ all other parameters were
constrained to zero. The parametéts , are derivable from
the rotationalg factor and dipolar moment of LiH, both from
quantum mechanical computatioft$® and with the relation-
ships reciprocal to egs 11 and 12.

To compare potential-energy parameters of GaH and LiH
generated with the Radiatom and with the present approach
(EDA signifying an extended Dunham’s approach), we expand
all radial functions (egs 4,-79 in variablez. The results of
calculations are reported in Tables 1 and 3; they contain also
parameters produced with the Radiatom with eigenenergies (eq
10) and DS-cP witlR,; computed numerically. The uncertainty
in parentheses is one estimated standard deviation in units of
the last quoted digit of values of fitted parameters.

In the calculations, we used the vibrational term coefficients

_ h
Vo= 3 ¥
=

up to tenth order for GaH and sixth order for LiH. Consequently,
expansion coefficientls;,”]J of the effective potential energy (eq
6) contain derivatives up to twelfth order (GaH) and eighth order
b’ were calculated with

(40)
(41)

(42)

symbolic processor Maple.

6 Discussion

The application of the extended approach enables reduction
of wavenumbers of 1094 vibratiemotational transitions of GaH
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TABLE 3: Radial Parameters? of LiH XX+t these parameters were replaced with nonadiabatic vibrational
radiator DS-cP EDA oness? = 0.539(81) ands.® = 14.2(3.8), providing the same

comt 65724.857(72)  65723.17(10) 65723.487(93) statlstlc_al characteristic of the fit a§ obtal_ned prewously.
C1 —0.897208(12) —0.897091(15) —0.897117(10) According to our results the presence in the fit of eltq‘éaror
C 0.347847(76) ~ 0.348249(30)  0.348153(21) s°® is questionable; for such a massive nuclide as gallium
Cs —0.086373(42) —0.08863(38) —0.08796(17) adiabatic and vibrational nonadiabatic effects are undetectable,
Ca —0.04529(18) —0.04611(72) —0.04653(37) X . Lo "
c —0.0307(52) possibly due in the latter case to a vibratioimaiobility of the
C. 0.0921(96) heavy Ga center for which the BO approximation becomes
ui/10tcmt  —5.740(44) —5.704(45) —5.671(43) satisfactory.

H —1 — — — .
ua/ 10* cm- 5.2787(31) 5.2706(44) 5.2765(39) Our present approach appears to lack these disadvantages and
Up/10* cr? 7.245(70) 6.452(35) 5.989(70) roduces radial parameters that form the most compact and
ul10temt  —7.53(14) —7.02(19) —1.53(26) produ lal p ) P
W10t et 9.55(58) phys_|cally meaningful representation of GaH data so far
digotemt  —0.194(11)  2.064(14) 2.049(21) obtained.
s, —0.567(10) —0.4359(86)  —0.374(10) We encountered similar circumstances for LiH data in the
s —2.00(16) present work with circulating values &f;. Table 2 reveals that
S —0.591(112)  —2.99(17) this approach allows us to evaluate the nonadiabatic vibrational
Ry/10°m 1.594912(14)  1.59491217(51) 1.59491228(48) ' = —2.00(16) ind . ith both Radi
5 1.095 1.090 1.077 paramete =2 (16) in etgrmlnate wit ' ot a iatom
F/10%5 5.0 5.98 6.56 and DS-cP; in the latter case its presence in the fit led to a
N 15 14 13 divergent DS-c process, unlike in the present work in which

aAll parameterstiio_6 andt!, . are constrained to values specified reduction Of, 543 Spe(,:t'_’al data of LiH t‘,’l - 1,3 rad'a,ll
in the work?® b Data® ¢ Datas® parameters is more efficient than that obtained with Radiatom

(N = 15) and DS-cPN = 14).

to N = 18 radial parameters rather thah= 23 in preceding The proposed fitting procedure with circulatifg, is rapidly

26,30 : - i . . . > Tar .
work 2> Despite the absence of these five superfluous param- .nyergent and in the case of LiH requires three iterations (in
eters, the remaining ones satisfactorily reproduce data of GaHcomparison with 15 in DS-cP) to obtain parameters in a final
within uncertainties of spectral measurements. y set such that values alter less than their standard errors and affect
From nonadiabatic rotational parametef$ and t;, we insignificantly the precision of calculations. Initial values of

estimated the permanent rotatiogdctorgo = —3.493(61) at  fitteq parameters were taken from Ogilvie’s calculatidhs.
Ro and electric dipolar moment, = 6.9(44) x 10730 Cm for

69GalH. The first value conforms acceptably wigh= —3.4440 As in the present algorithm all mathematical formulae are
calculated with a second order polarization propagator ap- derived in analytic form, one can apply this approach to
proximation?! In contrast, the estimated magnitude of electric duantitative analysis of spectral data using standard software

dipolar moment much exceeds results of several calculations:for weighted nonlinear regression. To this goal vibrational term
41-43 30,2374, 1.3489x 10730 Cm), 1.5334x 1032 Cm, and coefficientsYiq can also be generated with Magfet” With such

1.20 x 1073 Cm, all at assumed polarityGaH". For programs one can readily fit measured frequencies of numerous
comparison, values from Radiatom afg= —7.3(47)x 10730 wavenumbers of transitions of multiple isotopic variants of a
Cm andgo = —3.223(11); the latter is near the valge = diatomic molecule to evaluate parameters of pertinent radial
—3.2452 calculated with a coupled perturbed Hartrieeck functions. The latter are an important source of information
method* Ds-cP yielded an identical (within stated errors) value about the internal structure and physical properties including
of uo like the present approach but a divergent vatiye= mechanical, extramechanical, and electromagnetic molecular

—4.2535(46). The latter result is a consequence of excluding properties®®

u; from fitted parameters; its presence precluded convergence The results obtained in this work indicate that our extension
of DS-cP because; strongly correlaté with to. In contrast,  of punham's approach can be expected to enable a contempo-
the present approach is insensitive to this effect and enables tq.5ry spectroscopist to extend the range and depth of analysis of
evaluate both} andtf}, resulting in a reasonable estimation of spectra measured at the present state of the art.

do-
Applying the dissociation formula (eq 39) and values of GaH
parameters; generated with Radiatom, we calculatBd =
—1.72 x 10° cm~* which differs significantly with experimental
value De = 22906 cnt?. In order to avoid such inconsistency
in the present work, we constrained

Acknowledgment. | thank Professor J. F. Ogilvie for
constructive computational consultation and for providing
spectral data and Professor J. Konarski for helpful discussion.

D, ’ . Appendix
-@%+Y 27%0) D, = 22906 cm*
2%, =

CSZ

(43) To simplify calculations of thenth derivative b2’ of the
effective potentiall,5(n) with Maple, we rewrite eq 34 in the

to ensure physical significance of all potential parameters. The form
calculated value ofg = —0.0581(47) is about 1/28 times the
valuecg = —1.632(107) produced with Radiatoth. N

In an analysis of(the s?aFr)ne GaH data Ogilvie and ¥9aoorly B,od( + DL+ £ c(i)z]
determined adiabatic parametef& = 5.515(830)x 10¢ cm 1 U, = + 5 di)Z (44)
andug® = 38.9(13.8)x 10* cmL. In a subsequent analy&s 1+ n)? =
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in which
271 +)E§<J:+n7(71(1++xil)]/z (45)
c(i) = meﬂzz&b % — g)m,* (46)
d(0) = E”Jmeuzza,fg m,’ 47)
d(1)= me”;b (8 + upm,* (48)
d@2)= meﬂ:zab (Eus Uz — cp)m, + ¢ (49)
di > 2)= mz:za,b [E.o8 + U — cof§z

i—-3

Z) Ci——§)] m;l + CoGi, (50)
=

Equation 44 ensures that the Maple output is in its most compact

form, so that for example coefficieft’ (derivative of four-
teenth order) written in Fortran optimized form, takes only 391
lines forc(i) i = 0...6 andd(i) i = 0...15.

The starting point to calculate,; is the first derivative of
the effective potential energy (eq 34)

f= deJ(n) — dUUJ(X)

G oy X9 (51)
in which
1+ny=g—;7( X=X+ n(l+x,) (52)
To calculatef, we rewrite eq 44 in the form
BJWJ+ 1)[1+ ZJc(i)i]
U,o(¥) = - + Y di? (53)
(1+x7 =
in which
z= ﬁ (54)

Proceeding through eqs 282, one obtaing,; in an analytic
form applied in calculations as a Maple output in optimized
Fortran code. The Maple output is available from the author
upon request.
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